A novel probabilistic forecast system predicting anomalously warm 2018-2022 reinforcing the long-term global warming trend | Nature Communications
In a changing climate, there is an ever-increasing societal demand for accurate and reliable interannual predictions. Accurate and reliable interannual predictions of global temperatures are key for determining the regional climate change impacts that scale with global temperature, such as precipitation extremes, severe droughts, or intense hurricane activity, for instance. However, the chaotic nature of the climate system limits prediction accuracy on such timescales. Here we develop a novel method to predict global-mean surface air temperature and sea surface temperature, based on transfer operators, which allows, by-design, probabilistic forecasts. The prediction accuracy is equivalent to operational forecasts and its reliability is high. The post-1998 global warming hiatus is well predicted. For 2018–2022, the probabilistic forecast indicates a warmer than normal period, with respect to the forced trend. This will temporarily reinforce the long-term global warming trend. The coming warm period is associated with an increased likelihood of intense to extreme temperatures. The important numerical efficiency of the method (a few hundredths of a second on a laptop) opens the possibility for real-time probabilistic predictions carried out on personal mobile devices.
Veille Scientifique et Technologique quotidienne sur les thématiques de recherche du département Cosys de
l'Université Gustave Eiffel et plus largement sur les thématiques de la ville durable.
Environ 25 000 articles issus de différentes sources, académiques, industrielles, gouvernementales, françaises et internationales.
Utilisez le moteur de recherche du blog.
Aucun commentaire:
Enregistrer un commentaire