Stereo Ambiguity Index for Semi-Global Matching: Stereoscopic reconstruction is important to automatic vision systems. As an intermediate step, estimating this reconstruction is not enough for good performance of the whole system, and its uncertainty must be characterized. Several methods propose uncertainty indexes based on specific data features, thus incomplete, while others are based on learning. We propose a simple index, named ambiguity index, taking into account both data and regularization, and derived directly from the optimization process. Exploiting properties of dynamic programming, this index is related to the posterior variance of the solution when the Semi-Global Matching (SGM) algorithm is used for stereo reconstruction. To illustrate its interest, improvements in refining stereo reconstruction are shown on the KITTI datasets when the index is used.
Mathias Paget, Jean Philippe Tarel, Pascal Monasse. Stereo Ambiguity Index for Semi-Global Matching. ICIP'17, IEEE International Conference on Image Processing, Sep 2017, PEKIN, China. ICIP'17, IEEE International Conference on Image Processing, 5p., 2017. 〈hal-01592680〉
Veille Scientifique et Technologique quotidienne sur les thématiques de recherche du département Cosys de
l'Université Gustave Eiffel et plus largement sur les thématiques de la ville durable.
Environ 25 000 articles issus de différentes sources, académiques, industrielles, gouvernementales, françaises et internationales.
Utilisez le moteur de recherche du blog.
Aucun commentaire:
Enregistrer un commentaire