Veille Scientifique et Technologique quotidienne sur les thématiques de recherche du département Cosys de
l'Université Gustave Eiffel et plus largement sur les thématiques de la ville durable.
Environ 25 000 articles issus de différentes sources, académiques, industrielles, gouvernementales, françaises et internationales.
Utilisez le moteur de recherche du blog.
Localisation autonome par apprentissage des dynamiques de déplacement en transport multimodal - Archive ouverte HAL
Localisation autonome par apprentissage des dynamiques de déplacement en transport multimodal - Archive ouverte HAL: Le développement croissant d'objets intelligents offre de nouvelles opportunités de localisation du voyageur connecté. Cependant, le suivi de la trajectoire du piéton reste problématique et les applications de navigation ne proposent pas de suivre la trajectoire du voyageur à l’échelle multimodale de façon autonome. Ce travail s’intéresse à la mise en place d’une solution unique capable de localiser l’utilisateur selon différents mode de déplacement et quel que soit l’environnement, à partir de capteurs inertiels, magnétique et GNSS. Dans un premier temps, une nouvelle méthode de localisation du cycliste est mise en place. Les mesures de phases GNSS sont utilisées pour corriger le vecteur vitesse par différences temporelles et la direction de déplacement est contrainte à l'aide des signaux inertiels. Ces éléments ont été utilisés dans un second temps et adaptés pour mettre en place une nouvelle méthode de localisation du piéton avec un capteur en main. L’approche PDR qui est une technique de navigation inertielle à l’estime est paramétrée dans un filtre de Kalman étendu. Une mise à jour innovante fusionnant l’estimation de l’attitude du boîtier et une estimation statistique de la d
Inscription à :
Publier les commentaires (Atom)
Aucun commentaire:
Enregistrer un commentaire