A Cooperative Fusion Architecture for Robust Localization: Application to Autonomous Driving
Abstract : The localization of a vehicle is a central task of autonomous driving. Most of the time, it is solved by considering a single algorithm with a few sensors. In this paper, we propose a cooperative fusion architecture based on two main algorithms: a laser-based Simultaneous Localization And Mapping (SLAM) process and a lane detection and tracking approach using a single camera. Both algorithms are designed individually as cooperative fusion processes where other sensors (GPS and proprioceptive information) and dedicated maps are integrated to strengthen the advantages of each system. The whole architecture is formalized around key components (ego-vehicle, roadway, obstacle and environment). A final decision layer, that takes into account the state of each algorithm, allows the system to choose the most appropriate ego-vehicle localization mean based on the current road situation and the environmental context.
Guillaume Bresson, Mohamed-Cherif Rahal, Dominique Gruyer, Marc Revilloud, Zayed Alsayed. A Cooperative Fusion Architecture for Robust Localization: Application to Autonomous Driving. IEEE Intelligent Transportation Systems Conference 2016, Nov 2016, Rio de Janeiro, Brazil. <hal-01379322>
Veille Scientifique et Technologique quotidienne sur les thématiques de recherche du département Cosys de
l'Université Gustave Eiffel et plus largement sur les thématiques de la ville durable.
Environ 25 000 articles issus de différentes sources, académiques, industrielles, gouvernementales, françaises et internationales.
Utilisez le moteur de recherche du blog.
Aucun commentaire:
Enregistrer un commentaire