Effect of joint mechanism on vehicle redirectional capability of water-filled road safety barrier systems
Portable water-filled barriers (PWFBs) are roadside appurtenances that prevent vehicles from penetrating into temporary construction zones on roadways. PWFBs are required to satisfy the strict regulations for vehicle re-direction in tests. However, many of the current PWFBs fail to re-direct the vehicle at high speeds due to the inability of the joints to provide appropriate stiffness. The joint mechanism hence plays a crucial role in the performance of a PWFB system at high speed impacts. This paper investigates the desired features of the joint mechanism in a PWFB system that can re-direct vehicles at high speeds, while limiting the lateral displacement to acceptable limits. A rectangular “wall” representative of a 30 m long barrier system was modeled and a novel method of joining adjacent road barriers was introduced through appropriate pin-joint connections. The impact response of the barrier “wall” and the vehicle was obtained and the results show that a rotational stiffness of 3000 kNm/rad at the joints seems to provide the desired features of the PWFB system to re-direct impacting vehicles and restrict the lateral deflection. These research findings will be useful to safety engineers and road barrier designers in developing a new generation of PWFBs for increased road safety.
Veille Scientifique et Technologique quotidienne sur les thématiques de recherche du département Cosys de
l'Université Gustave Eiffel et plus largement sur les thématiques de la ville durable.
Environ 25 000 articles issus de différentes sources, académiques, industrielles, gouvernementales, françaises et internationales.
Utilisez le moteur de recherche du blog.
Aucun commentaire:
Enregistrer un commentaire